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Abstract

This paper describes applications of the discretization procedure presented in the companion paper [A.W. Date,

Solution of transport equations on unstructured meshes with cell-centered colocated variables. Part I. Discretization,

Companion Paper, this volume]. Six problems having different domain complexities, presence of body and surface

forces and, boundary conditions are solved. Where possible, the solutions are compared with published experimental

or numerical data.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The discretization procedure described in Part I of

this paper has employed novel line-structure. It is of

interest, therefore, to demonstrate the predictive capa-

bility of this procedure. For this purpose, six problems

are considered:

1. Flow in a lid-driven cubic cavity.

2. Buoyancy-driven flow and heat transfer in a tilted

cubic-cavity.

3. Flow in a 2D planar T-branch.

4. Flow in a 3D branched channel of square cross-

section.
0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv
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5. Flow and heat transfer in a tube containing a twisted

tape.

6. Flow in a subsonic-to-supersonic convergent-diver-

gent nozzle.

The present solutions, where applicable, are com-

pared with previously published experimental or numer-

ical results. Details of mesh-size, relaxation parameters

and convergence are given. All computations are

performed using Pentium-II (400MHz) personal com-

puter.
2. Presentation of results

2.1. Lid-driven cubic cavity

Fig. 1a shows the lid-driven cubic cavity. In this case,

the mesh with hexahedral cells is employed. Computa-

tions are performed with different number of uniformly
ed.
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Nomenclature

D channel dimension

f fanning friction factor

M Mach number

p pressure

Nu Nusselt number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

T temperature

Greek symbols

a under-relaxation factor for velocity

b under-relaxation factor for pressure or

blending factor

l dynamic viscosity

q density

U general variable
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spaced vertices (123,163,223). The maximum momentum

and mass residuals are reduced to less than 10�5. All

computations are performed for Re = UlidL/m = 400
where L is the length of cavity sides.

Fig. 2 shows the effect of blending parameter b used
in the convection scheme [1] on the predicted u/Ulid. The

results (at X = Z = 0.5) are plotted for 123 mesh. It is

seen that the predicted peak negative velocity increases

with b. Similar tendencies were observed with finer
meshes. Hence, all results plotted in Fig. 3 are obtained

using CDS (b = 1) and are shown by open symbols. For
reference, computed mid-cavity profile using 513 struc-

tured-cartesian grids and UDS is also plotted (solid

line). It is seen that the maximum negative velocity (u/

Ulid = �0.198) predicted with 9261 elements and CDS
exceeds that predicted by much finer structured grid

UDS predictions. Thus, numerical diffusion introduced

by UDS appears to be significant. In fact, the present

unstructured mesh predictions with 9261 elements and
Ulid
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CDS compare extremely favourably with those pre-

dicted (not shown) by Jiang et al. [2] using finite element

method and by Zhao and Zhang [3] who employ third

order accurate upwind scheme with 455,625 tetrahedral

elements.

2.2. Buoyancy-driven flow in a tilted cavity

Fig. 1b shows the tilted cavity in which the face at x/

L = 0 is hot and that at x/L = 1 is cold. All other side

walls are perfectly conducting so that the temperature

distributions on these walls are given by T = Th �
(Th � Tc)x/L. Leong et al. [4,5] have presented experi-

mental data for different Rayleigh numbers (Ra) using

air (Pr = 0.7) as the working medium. At CHT�01 con-
ference, the data were predicted by several researchers

using in-house and commercially available computer

codes [6] for three tilt angles U = 0�, 45� and 90�. The
objective here is to repeat these computations using
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the present discretization procedure and carry out simi-

lar comparisons.

For the purpose of computations, non-uniform hexa-

hedral elements were used. 1 Uniform properties were

assumed (q = Cp = 1, l = 0.01). The x- and y-momen-
1 The coordinates of vertices were x,y = 0.0,0.01,0.03,0.06,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.94, 0.97, 0.99, 1.0 and

z = 0.0,0.01,0.03,0.06, 0.1, 0.2, 0.3, 0.4, 0.5 Thus, z = 0.5 was

treated as plane of symmetry.
tum equations were sensitised to buoyancy force term

accounting for effect of angle U. The average wall heat
transfers at hot and cold walls were expressed through

Nusselt numbers

Nuh;c ¼
R L
0

R L
0
oT=oxjh;c dy dz
ðT h � T cÞ

ð1Þ

Table 1 shows the comparisons. Only those authors

who predicted for all specified Ra at CHT01 conference

are mentioned in the table. The number of elements used

by different authors were: 64,000 (hex) [7], 256,000 (hex)



Table 1

Nusselt numbers for tilted cubic cavity

W Ra Expt [4] In-house [7] FLUENT [10] FLUENT [8] CFX [9] Present

90 105 3.069–3.125 3.11 3.195 3.09 3.10 3.136

106 6.313–6.453 6.53 6.25 7.26 6.43 6.476

107 12.82–13.14 13.05 13.84 16.76 13.10 12.85

108 26.36–27.04 24.86 28.34 38.20 24.99 28.01

45 105 3.458–3.526 3.575 3.509 3.44 3.51 3.528

106 8.736–8.938 8.80 9.285 8.58 8.61 8.991

107 17.29–17.71 17.10 18.45 17.03 15.85 18.11

0 105 3.474–3.544 3.24 3.75 3.40 3.30 3.17

106 7.792–7.974 8.12 8.33 7.38 7.57 7.85

107 15.19–15.57 14.78 – 15.44 14.14 16.25

Fig. 5. Unstructured mesh––2D T-branch.

S. Pimpalnerkar et al. / International Journal of Heat and Mass Transfer 48 (2005) 1128–1136 1131
[10], 32,000 (hex) [9] and 294,173 (tet) [8]. In contrast,

the present predictions are obtained with 2048 hexahe-

dral elements and CDS.

It was found that while at low values of Ra, steady-

state calculations with constant under-relaxation factor

a for all variables were adequate for obtaining con-
verged solutions, at higher values of Ra, unsteady calcu-

lations were necessary. For such calculations, the

temperature profile at t = 0 was taken to be linear in

x-direction. Nusselt numbers obtained by unsteady cal-

culations showed oscillations with time. A typical oscil-

latory behaviour for U = 0 and Ra = 106 is shown in Fig.
4. In such cases, the hot-wall and cold-wall Nusselt num-

bers were also not equal at every instant of time. As

such, the Nu values were averaged over last few hundred

steps at hot wall and are therefore underlined in Table 1.

While this introduces ambiguity, it none-the-less is the

practice adopted by other investigators mentioned

above.
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Table 1 shows that the presently predicted Nu values

are in good agreement with experimental values for

U = 90� inspite of the relatively small number of ele-
ments used in the computations. For lower angles

and high values of Ra, the disagreements are moderate
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indicating that further mesh-refinement will bring closer

agreements.

2.3. Flow in a 2D planar T-branch

Fig. 5 considers laminar flow a 2D-plane channel

having a T-branch. Flow (fully-developed velocity pro-

file) enters the main branch from the left and is divided

into T-branch and the main branch. The widths (D) of

the main and T-branch are identical. The length of the

main branch is 6D and that of the T-branch is 3D.

The pressure at the two exit planes is fixed (pex = 1).

The objective is to determine the fraction of inflow leav-

ing the main branch.
Fig. 7. Unstructured mesh––3D
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In the present computations, the problem is solved

using triangular coarse mesh with 299 elements (191 ver-

tices). The elements were generated using ANSYS. The

predicted flow-fractions are compared with predictions

of Hayes et al. [17] in Fig. 6. The figure shows that in-

spite of mesh-coarseness, the predicted flow fractions

agree with previous predictions with maximum devia-

tion of 7%. The computations were repeated with 4761

elements. Now, the results are found to be good (except

at the lowest Reynolds number). This problem has been

computed by [11] with 2721 adaptive quadrilateral

meshes within the cell-centred approach and with 8100

quadrilateral meshes within the vertex-centred approach

by [16].
branch W = 90�, 60�, 30�.
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Table 2

FFR and Cp for 3D branch

Re W = 90 W = 60 W = 30

FFR Cp FFR Cp FFR Cp

20 0.5289 7.974 0.5176 8.270 0.4675 8.154

100 0.6167 1.5692 0.5794 1.659 0.4975 1.565

200 0.6683 0.6458 0.621 0.6810 0.5221 0.5757

300 0.7028 0.3107 0.6528 0.320 0.5382 0.2124

400 0.7276 0.1336 0.6807 0.1335 0.5432 0.011

500 0.7450 0.0204 0.7046 0.0205 0.5459 �0.1166
600 0.7623 �0.050 0.7244 �0.0463 0.526 �0.192

Fig. 9. Unstructured mesh––twisted tape problem.
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2.4. Flow in a 3D branched channel

Consider laminar flow in a branched channel (see

Fig. 7) of square cross-section (each side D). The flow

enters the main branch from the bottom with fully-

developed velocity profile given by [21]

v ¼ 2:1157� 1� 2z
D

� �2:2( )
� 1� 2x

D

� �2:2( )
ð2Þ

where the origin x = z = 0 coincides with the centre of

the square cross-section. The main channel is 7D long

whereas the branched channel is 3D long. The objective

is to predict the fraction of inflow exiting through the

main channel for three angles W between the two chan-
nels. The exit pressure in both branches is fixed at

pex = 1. Computations are performed with W = 90
(3390 elements), 60 (3581 elements) and 30 (3609 ele-

ments) and employing UDS (b = 0). The tetrahedral ele-
ments are generated using ANSYS. Table 2 presents

values of FFR and Cp defined as

FFR ¼ Exit Mass Flow through Main Branch
Mass Flow at Inlet

Cp ¼
pin � pex

qu2in
ð3Þ

where pin and uin are average pressure and velocity at

inflow plane. The table shows that irrespective of the

angle, the flow-fraction in the main branch increases

with Reynolds number whereas the pressure-coefficient

decreases. Similarly, for a given Re, the flow fractions

through the main branch decrease with decrease in the

angle but, Cp values show non-monotonous trend. At

high Re, the Cp values are negative indicating that the

average pressure at the inlet plane is less than exit pres-

sure. To our knowledge, there are no experimental or

numerical data available for comparison.

2.5. Tube containing a twisted tape

Consider flow in a tube containing a twisted tape of

thickness d. The width of the tape equals tube internal
diameter D as shown in Fig. 8. The axial distance for

180� rotation of the tape equals H. The flow is fully-
H
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Fig. 8. Tube containin
developed and laminar. The heat transfer is under axially

and peripherally constant wall flux (qw) condition but

the tape contributes negligibly to finning. Under these

conditions, the Fanning friction factor f and Nusselt

number Nu are governed by [14]

f Re ¼ F ðRe; Y Þ

Nu ¼ hD
k

¼ qw
ðT w � T bÞ

D
k
¼ F ðRe; Y ; PrÞ ð4Þ

where Re ¼ �u3D=m, T w is circumferentially averaged tube

wall temperature, Tb is fluid bulk temperature and, the

tape-twist parameter Y is defined as

Y ¼ H
D

ð5Þ

In a fixed coordinate system (x,y,z), the flow is three-

dimensional. However, by defining a rotating coordinate

system (x1,x2,x3 = z) that rotates with the orientation of
D
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Fig. 11. Triangular mesh––2D plane nozzle.

2 Note that the Nu-data are plotted against Pr(Re/Y)1.78 as

recommended by Hong and Bergles [13].
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the tape, the governing equations can be rendered two-

dimensional under fully developed conditions because

oU/ox3 = 0 for all variables except pressure and temper-
ature. The mean pressure gradient o�p=ox3 ¼ constant.
Similarly, oT/ox3 = oTb/ox3 = constant and the value of

the constant is derived from energy balance. The trans-

port equation must therefore be transformed into rotat-

ing coordinate system. The resulting equations are given

in [15] and, therefore, not repeated here. The equations

for U = u1, u2, u3, p
0 and T are solved in a semicircular

domain assuming flow symmetry about the tape of zero

thickness (d = 0) because in practical applications d/
D � 1/30. Computations are performed for a prescribed
axial pressure gradient o�p=ox3. The mean velocity �u3
and, hence, Re is the solution. Fig. 9 shows the unstruc-

tured mesh (1594 elements and 873 vertices). Cell-den-

sity in near-wall regions is increased to accurately

capture high temperature gradients at high Prandtl num-

bers. The predicted friction factor data are compared in

Fig. 10 with the following correlation due to Date and

Singham [14]:

f ¼ 38:4
Y 0:05 Re0:95

for Re
Y < 100

f ¼ C Re
Y

� ��0:7
for Re

Y > 100
ð6Þ
where C=8.8201� 2.1193Y+0.2108Y2� 0.0069Y3. The
correlation is based on numerical predictions but has

been found to predict experimental data of Saha et al.

[12] within ±13%. Note that for Y =1 (that is, un-

twisted tape), an exact solution due to Weigand [20] pre-

dicts fRe = 42.23. The predicted data for finite Y show

that irrespective of twist, at low Reynolds numbers,

the fRe values do indeed asymptotically approach

42.23 as expected. Fig. 10 also shows comparison of

the presently computed Nu-data 2 for 0.1 < Pr < 100

with the following experimental correlation due to [13].

Nu ¼ 5:172 1þ 0:005484Pr0:7 Re
Y

� �1:25" #0:5
ð7Þ

The correlation predicts experimental data of [13]

within ±25%. Similar agreement is found for 90% of

the presently computed data. The value Nu = 5.172 cor-

responds to Y =1. Again, the present data asymptoti-
cally approach this value at low Reynolds numbers.



Fig. 12. Variation of pressure and Mach number.

Fig. 13. Mach number contours.
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2.6. Plane convergent–divergent nozzle

Consider a 2D plane convergent–divergent nozzle

shown in Fig. 11. The total length of the nozzle is

11.56cm and throat is midway. The inlet, throat and exit

sections are respectively 3.52, 1.37 and 2.46cms high

when measured from the symmetry axis. The inlet Mach

no is Min = 0.232 and exit static pressure is fixed at Pex/

Pstag = 0.1135. Computations are performed by generat-

ing a triangular mesh (570 elements). The flow is taken

to be inviscid, that is, l = 0 and stagnation enthalpy is
assumed constant.

The novel feature of this compressible flow computa-

tion is the use of TVD scheme due to [18] for represen-

tation of convective transport (see Part I [1]). At inflow

plane, since Min is known, uin, Tin and pin are specified

using standard isentropic relations. At exit plane, except

for pressure (which is fixed), all other variables are line-

arly extrapolated from near-boundary values. At the

upper wall, tangency condition is applied. The pressure

distribution is determined by solving the compressible

flow version of the total pressure-correction equation.

Momentum equations for W = u1, u2 are solved and tem-

perature is determined from assumed stagnation enthal-
py. Finally, density is determined from equation of state

p = qRT.
The computed results for p/pstag (dotted line) and

M (solid line) are plotted in Fig. 12. The experimental

data for p/pstag (open circles) are due to Mason et al.

[19]. The figure shows good agreement with the exper-

imental data. Note also that wall Mach number passes

sharply through M = 1 exactly at the throat (X/

L = 0.5) and reaches M = 2.01 at exit. At the center-

line, the M = 1 location is downstream of throat.

The iso-Mach number contours are slanted (see Fig.

13).
3. Conclusions

(1) The calculation procedure described in [1] has

been successfully applied to several problems with differ-

ent geometric complexities, presence of body and surface

forces and boundary conditions.

(2) The procedure is able to predict accurate results

using relatively coarse grids. The blended convection

scheme is found useful for reducing false numerical

diffusion.
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